Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells.
نویسندگان
چکیده
OBJECTIVE Advanced atherosclerotic lesions in the innominate arteries of chow-fed apolipoprotein E-deficient mice become highly calcified with 100% frequency by 75 weeks of age. The time course, cell types, and mechanism(s) associated with calcification were investigated. METHODS AND RESULTS The deposition of hydroxyapatite is preceded by the formation of fibro-fatty nodules that are populated by cells that morphologically resemble chondrocytes. These cells are spatially associated with small deposits of hydroxyapatite in animals between 45 and 60 weeks of age. Immunocytochemical analyses with antibodies recognizing known chondrocyte proteins show that these cells express the same proteins as chondrocytes within developing bone. Histological and electron microscopic analyses of lesions from animals between 45 and 60 weeks of age show that the chondrocyte-like cells are surrounded by dense connective tissue that stains positive for type II collagen. Nanocrystals of hydroxyapatite can be seen within matrix vesicles derived from the chondrocyte-like cells. In mice between 75 and 104 weeks of age, the lesions have significantly reduced cellularity and contain large calcium deposits. The few remaining chondrocyte-like cells are located adjacent to or within the large areas of calcification. CONCLUSIONS Calcification of advanced lesions in chow-fed apolipoprotein E-deficient mice occurs reproducibly in mice between 45 and 75 weeks of age. The deposition of hydroxyapatite is mediated by chondrocytes, which suggests that the mechanism of calcification may in part recapitulate the process of endochondral bone formation.
منابع مشابه
Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice.
OBJECTIVE Osteoprotegerin (OPG), a member of the tumor necrosis factor (TNF) superfamily of proteins, plays an important role in bone remodeling and is expressed in both mouse and human atherosclerotic lesions. The current study was designed to assess whether OPG plays a role in the progression and calcification of advanced atherosclerotic lesions in apoE(-/-) mice. METHODS AND RESULTS Athero...
متن کاملArterial macrophages and regenerating endothelial cells express P-selectin in atherosclerosis-prone apolipoprotein E-deficient mice.
P-selectin expression has been reported in platelets, endothelial cells, and vascular smooth muscle cells in response to vascular injury. Here, we report P-selectin expression on macrophages in the arterial wall after carotid denudation injury and spontaneous atherosclerosis in atherosclerosis-prone apoE-deficient (apoE(-/-)) mice. Double-immunofluorescence staining revealed robust P-selectin e...
متن کاملSimvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering.
OBJECTIVE This study sought to determine whether simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has stabilizing effects on vulnerable atherosclerotic plaques that are independent of their lipid-lowering capabilities. METHODS AND RESULTS Simvastatin (50 mg/kg per day) was administered to 30-week-old apolipoprotein E-deficient mice exhibiting advanced unstable atheros...
متن کاملTRAIL-Deficiency Accelerates Vascular Calcification in Atherosclerosis via Modulation of RANKL
The osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) cytokine system, not only controls bone homeostasis, but has been implicated in regulating vascular calcification. TNF-related apoptosis-inducing ligand (TRAIL) is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is not yet established. This ...
متن کاملShift of Macrophage Phenotype Due to Cartilage Oligomeric Matrix Protein Deficiency Drives Atherosclerotic Calcification.
RATIONALE Intimal calcification is highly correlated with atherosclerotic plaque burden, but the underlying mechanism is poorly understood. We recently reported that cartilage oligomeric matrix protein (COMP), a component of vascular extracellular matrix, is an endogenous inhibitor of vascular smooth muscle cell calcification. OBJECTIVE To investigate whether COMP affects atherosclerotic calc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2005